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Abstract
We study a natural extension to higher dimensions of the Nambu–Goto–
Polyakov action. In particular, those dynamical objects evolving with SO(3)

symmetry in four dimensions. We show that this problem is strongly related
to that of relativistic particles with rigidity of order three in a hyperbolic plane.
The moduli space of solitonic solutions is completely determined in terms of
the so-called rotation number. A quantization principle for closed solutions is
also obtained and this gives a rational one-parameter family of Willmore–Chen
hypersurfaces in the standard conformal structure of dimension four. Moreover,
these are the first non-standard examples of this kind of hypersurfaces.

PACS numbers: 02.40.Ky, 03.40.Dz, 04.50.+h, 04.65.+e, 11.10.Kk

1. Introduction

A particularly natural choice for the Lagrangian describing the dynamics in a bosonic string
theory is the so-called Nambu–Goto action. It measures, up to a coupling constant, the area
of the surfaces (worldsheets) in the ambient space. However, this theory presents serious
difficulties, for example, it cannot be quantized. To overcome these troubles, one introduces
the extrinsic curvature in the Lagrangian density. More precisely, one takes a QCD action in
four dimensions which adds extrinsic curvature action to the usual Nambu–Goto area term.
It has been set up by Polyakov [24] and independently by Kleinert [16]. In particular, the
theory with extrinsic curvature action alone is very familiar to differential geometers. A
variational problem associated with this action was formally introduced by Willmore in 1965
(see [28]). The so-called Willmore variational problem became popular for different reasons.
First, the functional and so the associated theory are invariant under conformal changes in the
background gravitational field. A second reason is the (still open) Willmore conjecture relative
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to surfaces of genus one [28]. The theory has been extended not only for hypersurfaces, but
also for submanifolds in pseudo-Riemannian spaces (see, for example, [10–12, 21, 27, 29]).
Therefore, the Willmore–Chen (WC) submanifolds (in particular, the Willmore surfaces), that
is the solutions to the field equations, are dynamical objects playing the role of branes in these
theories [6, 7, 9]. There are many known examples of Willmore surfaces with constant mean
curvature in spheres and also with non-constant mean curvature. The first known examples of
WC-submanifolds of dimension greater than 2 were obtained in [10]. There, the authors gave
a one-parameter class of four-dimensional, SO(4)-invariant, WC-submanifolds in the natural
conformal structure on a round seven-sphere. More recently, the standard products of spheres
which are WC-hypersurfaces in S

n+1(1) have been determined [15]. They have constant mean
curvature and are known as the standard examples. However, as far as we know, examples of
WC-hypersurfaces which do not fall within the conformal class of the standard examples are
not known in the literature.

In this paper we exhibit the first non-standard examples of WC-hypersurfaces. We
consider the conformalWC-action in the four-dimensional Euclidean space, acting on compact
hypersurfaces. Then, we look for SO(3)-invariant compact solutions of the field equation.
Next, we show that the reduced field equation coincides with that of relativistic spinning
particles with a rigidity of order 3 on a hyperbolic plane. We are able to integrate, using the
theory of elliptic functions, the field equation associated with this spinning particle and then
to describe a moduli space of solutions. By exchanging the modulus defining this family of
solutions, we introduce the so-called rotation in one period and show a quantization principle
to describe the moduli subspace of closed solutions and then the rational one-parameter class
of SO(3)-invariant WC-hypersurfaces in this theory.

2. Symmetric Willmore–Chen hypersurfaces

In R
4, we remove a certain straight line, say L. The remaining space R

4 − L can be identified,
via an obvious diffeomorphism, with the product H

2 × S
2, where H

2 = {(u, v) ∈ R
2/v > 0}

and S
2 stands for a two-sphere. Let go be the Euclidean metric on the half-plane H

2 and denote
by dσ 2 the radius one, round metric on S

2. Then, the Euclidean metric, ḡo, on R
4 − L can be

written as

ḡo = go + v2 dσ 2.

In other words, the Euclidean space R
4 − L is nothing but the warped product H

2 ×v S
2,

where v is regarded as a positive smooth function, on the Euclidean half-plane, playing the
role of warping function.

For any immersed curve γ : [0, L] → H
2, we have the hypersurface of R

4, Tγ = γ ×v S
2

and we will refer to Tγ as the tube around γ . Let G = SO(3) be the group of isometries
of (S2, dσ 2). Obviously, G acts transitively on (S2, dσ 2). We define an action of G on
R

4 − L = H
2 × S

2 as follows:

A(ξ, p) = (ξ,A(p)) for all (ξ, p) ∈ H
2 × S

2 and A ∈ SO(3).

It is clear that this action is realized through isometries of (R4 − L, ḡo). Moreover, the
tubes around curves in H

2 are G-invariant hypersurfaces. The following statement
characterizes the tubes as the only hypersurfaces with SO(3) gauge symmetry.

Proposition 2.1. Let M be a G-invariant hypersurface of (R4 − L, ḡo), then M is a tube
around a certain curve in the half-plane H

2.
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Proof. Since M is G-invariant, the orbit through every point, (ξ, p) ∈ M , is completely
contained in M. On the other hand, G acts transitively on S

2 and so the orbit through (ξ, p) is
given by

[(ξ, p)] = {(ξ,A(p))/A ∈ SO(3)} = (ξ, S
2).

This proves that M is foliated by two-spheres. The orthogonal distribution in M, being
one dimensional, can be integrated to get a curve γ in H

2 such that Tγ = M. �

Let H be the smooth manifold of compact hypersurfaces of R
4 − L. It is clear

that one has a natural action of G on H and the subset of symmetric points is HG =
{Tγ /γ is a curve immersed in H

2}. The Willmore–Chen functional [11], WC : H → R,
is defined to be

WC(M) =
∫

M

(α2 − τe)
3
2 dv.

α and τe denote the mean curvature and the extrinsic scalar curvature functions of the
hypersurface, respectively, and dv is the volume element associated with the induced metric
on M. This functional is invariant under the above G-action. Moreover, it is known that the
Lagrangian and the defined variational problem are invariant under conformal changes in the
background metric [11]. Therefore, we can apply the principle of symmetric criticality here
[20] to characterize those critical points that are G-invariant. These critical points are obtained
as solutions of the so-called reduced field equation, that is the Euler–Lagrange equation of the
restriction of the functional to HG [2]. In other words, critical symmetric points are nothing
but symmetric critical points.

To computeWC on HG, we take advantage of the above-mentioned conformal invariance.
Then, we make the following conformal change in (R4 − L, ḡo):

h̄0 = 1

v2
ḡ0 = 1

v2
go + dσ 2.

Now, we observe that
(
H

2, 1
v2 go

)
is nothing but the hyperbolic plane with constant

curvature −1. Therefore, we see that the new metric on R
4 − L, which is conformal to

the Euclidean one, is the Riemannian product of a hyperbolic plane with a round unit two-
sphere. This fact can be used to prove that the extrinsic scalar curvature, τe, of any tube,
vanishes identically. On the other hand, the mean curvature function, α, of a tube Tγ , and the
curvature function, κ , of the curve γ in the hyperbolic plane,

(
H

2, 1
v2 go

)
, are nicely related as

follows (see [7] for general relationship):

α2 = 1
9κ2.

All this information can be joined to obtain the restriction ofWC to the space of symmetric
points

WC(Tγ ) = 4

27
π

∫
γ

κ3 ds.

As a consequence, we have the following result for the reduction of variables:

Theorem 2.2. The tube Tγ is a Willmore–Chen hypersurface in R
4 if and only if γ is a critical

point of the following elastic energy action:

L3(γ ) =
∫

γ

κ3 ds (1)

which is assumed to act on closed immersed curves in H
2 and where κ denotes the curvature

function of γ in
(
H

2, 1
v2 go

)
.
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Critical points of L2(γ ) = ∫
γ

κ2 ds are known as elastic curves or, simply, elasticae.
The corresponding variational problem was introduced by Bernoulli and solved by Euler for
curves in the Euclidean plane [26]. More recently, the study of elasticae in Riemannian
manifolds has been a topic of intense study during the last years. To pick out just one example,
one can consult the excellent paper of Langer and Singer [17], where they study the closed
elastic curves in two-dimensional real space forms. A natural generalization of these curves
are the generalized elasticae or n-elasticae. They are critical points of Ln(γ ) = ∫

γ
κn ds.

Thus the above theorem can be rephrased as follows: a tube Tγ is a Willmore–Chen
hypersurface in R

4 if and only if the base curve γ is a 3-elastic curve in the hyperbolic plane,(
H

2, 1
v2 go

)
.

Remark 2.3. Some remarks on the above result should be pointed out:

(i) The result gives an interesting characterization for SO(3)-invariant Willmore–Chen
hypersurfaces in the four-dimensional Euclidean space. However, it does not prove the
existence of such hypersurfaces. Existence will be shown later by exhibiting closed curves
in the hyperbolic plane that solve the field equation associated with the Lagrangian L3.

(ii) Willmore–Chen tubes in R
4 correspond to extended dynamical objects emerging when a

round two-sphere propagates conformally (that is, moving without changing shape, only
radius and position) in R

4 along closed curves that are 3-elasticae in a hyperbolic plane.
This hyperbolic plane describes the conformal factor.

(iii) SO(3)-invariant Willmore–Chen hypersurfaces can be interpreted as solitons of the
conformal gravity on R

4, whose energy travels as a localized packet. In this
respect, these solitons have a particle-like behaviour. In fact, they are completely
determined by partner, spinning massless relativistic, particles that evolve in a hyperbolic
plane along 3-elastic trajectories. This constitutes a kind of holographic principle
[18, 19, 22, 23].

3. 3-elasticae in the hyperbolic plane

In this section we study 3-elastic curves in
(
H

2, 1
v2 go

)
. Since we are interested in closed

WC-hypersurfaces, we will restrict ourselves to the space of closed curves. Otherwise, one
might consider critical points that satisfy the given first-order boundary data, suitable to drop
out the boundary terms which appear when computing the first-order variation of the action.
To be precise, we consider the action that is defined by the Lagrangian L3 : � → R, where
� denotes the space of closed curves immersed in

(
H

2, 1
v2 go

)
. To compute the first-order

variation of this action, we use a standard argument involving some integrations by parts (see,
for example, [3, 19]), then we have

(κ2)ss + 2
3κ4 − κ2 = 0 (2)

where s and κ denote the arclength parameter and curvature of a curve, respectively. Therefore,
if κ is constant then either κ = 0 or κ =

√
3
2 . Having in mind the picture of curves with

constant curvature in
(
H

2, 1
v2 go

)
, the former case corresponds with the geodesics which

obviously are not closed while the latter one gives geodesic circles. These circles give rise to
closed WC-hypersurfaces in the four-dimensional Euclidean space with conformal constant
mean curvature. The reader should note that after a well-known Aleksandrov theorem [1], the
only embedded compact hypersurface with constant mean curvature in the four-dimensional
Euclidean space are the round three-spheres. So, one could not expect solutions in R

4, with
constant mean curvature and non-trivial topology.
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It will be useful to take u(s) = κ2(s) so that the Euler–Lagrange equation turns out to be

uss + 2
3u2 − u = 0

and so we multiply by us to obtain the following first integral:

u2
s = 1

9 (d − 4u3 + 9u2) = 1
9Q(u) (3)

where d ∈ R denotes a constant of integration. To integrate this equation, we note that Q
is a third degree polynomial and so standard techniques in terms of elliptic functions can be
used (see [13, 14] as general references). However, for this to make sense, we need Q(u) � 0
and u = κ2 � 0. Since the polynomial function Q has a minimum in u = 0 with value
Q(0) = d and a maximum in u = 3

2 with value Q
(

3
2

) = d + 27
4 , then the above conditions

hold if the minimum value is negative and the maximum one is positive. In other words when
d ∈ (− 27

4 , 0
)
. In this case, for any value of d in this interval the polynomial function has

three real roots which satisfy αd
1 < 0 < αd

2 < αd
3 < 9

4 . Therefore, if we look for the solution,
ud(s), with initial condition ud(0) = αd

2 , then using formulae 3.131 of [14], we see that it is a
periodic function which is given by

ud(s) = κ2
d (s) = αd

1

(
αd

3 − αd
2

)
sn2(pd · s,Md) − αd

2

(
αd

3 − αd
1

)(
αd

3 − αd
2

)
sn2(pd · s,Md) − (

αd
3 − αd

1

) (4)

where sn(pd · s,Md) denotes the Jacobi elliptic sine of modulus Md , and where pd,Md are
given by

Md =
√

αd
3 − αd

2

αd
3 − αd

1

and pd = 1

3

√
αd

3 − αd
1 . (5)

The minima and the maxima of the above solutions are reached at

ud(0) = αd
2 and ud

(
K(Md)

pd

)
= αd

3 (6)

where K(Md) is the complete elliptic integral of the first kind and modulus Md .
All this information can be summarized in the following statement:

Proposition 3.1. There exists a one-parameter family
{
γd/d ∈ (− 27

4 , 0
)}

of 3-elastic curves
with periodic curvature in the hyperbolic plane.

Proof. Just define the curve γd in
(
H

2, 1
v2 go

)
as that

(
up to isometries of

(
H

2, 1
v2 go

))
whose

curvature function is given by κd, (4). �

It should be noted that the periodicity of the curvature function, κd , of a L3-critical curve,
γd , is not enough to assure that γd is a closed curve.

4. Closed solutions and WC-hypersurfaces

Our next goal is to determine the closed 3-elastic curves among those obtained before. We
shall see that the parameter d can be exchanged for a new one with a deeper geometric meaning.

Let � be the smooth space of regular curves in H
2. For γ ∈ � and W ∈ Tγ � (it can be

viewed in H
2 as a vector field along the curve), we define a curve α : (−ε, ε) → �, t �→ αt ,

such that α0 = γ and dαt

dt

∣∣
t=0 = W . The picture in H

2 is a variation of the initial curve along
the variational field W . Denote by w = |α′

t | and κ the speed and the curvature functions,
respectively, of the curves in the variation. A vector field W along a curve γ is called a
Killing field along γ if W(w) = W(κ) = 0 [17]. If ∇ denotes the Levi–Civita connection on
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H

2, 1
v2 go

)
and {T ,N} the Frenet frame along γ , then the Killing vector fields along γ are the

solutions, X, of the following linear system (lemma 1.1 of [17]):

X(w) = 〈∇T X, T 〉 = 0
X(κ) = 〈∇2

T X − X,N
〉 = 0

(7)

where 〈,〉 = 1
v2 go denotes the inner product in H

2.
Obviously, the restriction of any Killing field of H

2 to γ gives a Killing vector field
along γ . The converse of this also holds [17]. Consequently, we have: W ∈ Tγ � is a Killing
vector field along γ if and only if it extends to a Killing field (that will also be denoted by W )
on

(
H

2, 1
v2 go

)
. Recall that a Killing field on the hyperbolic plane is called translational if it

has an integral geodesic. If it has a unique zero, then it is called rotational while horocyclical
means that it admits an integral curve being a horocycle. Then, we have

Proposition 4.1. Let γ be a critical curve of the L3 Lagrangian on H
2, included in the family

described in the previous proposition, and let κ denote its curvature. Then the vector field
defined by J = 2κ3T + 6κκsN is a rotational Killing field along γ .

Proof. Since γ is a solution of the Euler–Lagrange equation for L3, its curvature function
satisfies (2) and so ∇T J = 3κ2N and ∇2

T J = −3κ3T + 6κκsN . Consequently, by using (7)
we see that J is a Killing vector field along γ .

Now, take a vertex of γ, po, that is a critical point of the curvature function, κ . Denote
by δ the integral curve of J through po. It is clear that δ has constant curvature, say κ̂o. To
compute κ̂o, we first observe that δ is tangent to γ in the vertex po. Let ξ the unit tangent
vector field to δ, then

∇ξ ξ(po) = ∇T (po)

(
J

‖J‖
)

.

Since po is a vertex and using (3) one can see that d
ds

(
1

‖J (s)‖
)

vanishes at po and so

∇ξ ξ(po) =
(

1

‖J‖ (∇T J )

)
(po) =

(
3

2κ
N

)
(po).

Consequently, we have

κ̂o = 3

2κ(po)
. (8)

On the other hand, since d moves in
(− 27

4 , 0
)

then the greatest positive root of the
polynomial Q varies in

(
3
2 , 9

4

)
, hence κ2 satisfies αd

2 < κ2
d < αd

3 < 9
4 . Thus, we see from

(8) that κ̂o > 1. All this information shows that δ is a geodesic circle because it has constant
curvature greater than 1 and this is enough to assure that J is rotational. �

The above proposition is the main point of the following argument. Let γd, d ∈ (− 27
4 , 0

)
,

be a solution of the Euler–Lagrange equation for L3, and J be as given in the above
proposition. We denote also by J its extension to a Killing field in the hyperbolic plane.
Now, we choose a new, but equivalent, picture of

(
H

2, 1
v2 go

)
which is adapted to the couple

(γd, J ). First we view the hyperbolic plane as the Poincaré disk of radius 1 and centred
at the only zero of J . Then, we take polar coordinates, x(ρ, θ), in

(
H

2, 1
v2 go

)
so that the

curves of constant ρ are the integral curves of J , that is ∂θ = b · J , for some b ∈ R. In
this coordinate system, we write γd(s) = x(ρ(s), θ(s)). Then, we use the Euler–Lagrange
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equation to get

θs = 〈T , ∂θ 〉
|∂θ |2 = 2κ3

d

b
(
d + 9κ4

d

) (9)

and one may check that b2d = −1.
Let hd = 2K(Md)

pd
be the period of κd , where K(Md) is the complete elliptic integral of the

first kind and modulus Md , and where Md,pd are given as in (5). Then the rotation in one
period of γd is given by

�d = √−d

∫ hd

0

2κ3
d(

d + 9κ4
d

) ds. (10)

By a long computation that we sketch in the appendix, we obtain

�d = 2

3

√−d

nd

{
αd

2

q̃d

�

(
π

2
,
md

q̃d

, M̃d

)
− αd

2

qd

�

(
π

2
,
md

qd

, M̃d

)}
(11)

with �
(

π
2 , ν, M̃d

)
being the complete elliptic integral of third kind and modulus M̃d , and

where

M̃d =
√

αd
1

(
αd

2 − αd
3

)
αd

3

(
αd

2 − αd
1

) md =
√−d

(
αd

3 − αd
2

)
3αd

3

(12)

qd =
√−d

3
− αd

2 q̃d =
√−d

3
+ αd

2 nd =
√

αd
3

(
αd

2 − αd
1

)
. (13)

From this, we can prove (see the appendix)

Proposition 4.2. The rotation angle �d, decreases (monotonically) from
√

2π to π , as d
moves from − 27

4 to 0.

Now, we would like to determine the closed 3-elastic curves among the above γd. Since
d ∈ (− 27

4 , 0
)
, the curvature of γd(s) is a periodic function, κd(s), of period hd = 2K(Md)

pd
.

Moreover, note that since sinh(ρ(s)) = |∂θ | = b|J |, it follows from the expression of J given
in proposition 4.1 that ρ(s) is a periodic function whose period is a divisor of hd. Hence, it
is clear that if γd(s) is a closed 3-elastica, then it closes up in an integer multiple of hd and
therefore its rotation in one period, �d, must be a rational multiple of 2π . Conversely, if �d

is a rational multiple of 2π , then γd(s) is closed. Hence, we have the following quantization
principle: the rotation in one period of any closed 3-elastica comes only in rational multiples
of some basic quantity of charge. More precisely,

Theorem 4.3. Let γd, with d ∈ (− 27
4 , 0

)
a 3-elastica with periodic curvature. Then γd is a

closed curve in the hyperbolic plane if and only if its rotation in one period, �d, is a rational
multiple of 2π .

Thus, using proposition 4.2, we have

Corollary 4.4. For any couple of integers m,n such that 1
2 < m

n
<

√
2

2 , there exists a closed
3-elastica γmn in

(
H

2, 1
v2 go

)
.

Let d ∈ (− 27
4 , 0

)
be a real number for which �d = 2n

m
π as shown in the previous

propositions. Let κd(s) be the corresponding curvature functions and αd
2 , αd

3 > 0, the
minimum and maximum values of κd(s). Let us denote by γd(s) the curve associated with
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κd(s) and by �1,�2 and �3, the circles of curvatures
√

3
2 , 3

2
√

αd
2

and 3

2
√

αd
3

, respectively.

Then γd(s) is a convex curve which oscillates between �2 and �3 and which closes up after
m periods of κd(s) and n trips around �1.

Finally, we have from theorem 2.2 and corollary 4.4,

Corollary 4.5. There exists a rational one-parameter family, Tγmn
, 1

2 < m
n

<
√

2
2 , of closed

Willmore–Chen hypersurfaces in the Euclidean four-space.
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Appendix

Let γd be a solution of the L3-field equations corresponding to a value of d in the interval,
d ∈ (− 27

4 , 0
)
. As before, we denote by αd

1 , αd
2 and αd

3 the three real roots of the polynomial
Q(u) given in (3). They satisfy αd

1 < 0 < αd
2 < αd

3 < 9
4 .

Now, since κd(s), the curvature of γd , is given by (4–6), then it is a periodic function
of period hd = 2K(Md)

pd
, where K(Md) is the complete elliptic integral of the first kind and

modulus Md (5). The function κd(s) increases monotonically between its minimum and
maximum, which are reached in κd(0) =

√
αd

2 and κd

(
K(Md)

pd

) =
√

αd
3 , respectively, and it is

symmetric with respect to the line y = K(Md)

pd
. Hence, using (3), we have

�d = √−d

∫ hd

0

2κ3
d(

d + 9κ4
d

) ds = 6
√−d

∫ αd
3

αd
2

u2 du

(d + 9u2)

√
u

(
u − αd

1

) (
u − αd

2

) (
αd

3 − u
)

which can be written as �d = I1 + I2, where

I1 = 2

3

√−d

∫ αd
3

αd
2

du√
u

(
u − αd

1

) (
u − αd

2

) (
αd

3 − u
)

and

I2 = −2

3
d
√−d

∫ αd
3

αd
2

du

(d + 9u2)

√
u
(
u − αd

1

)(
u − αd

2

)(
αd

3 − u
)

Now, using 3.147 of [14] one gets

I1 = 4

3

√−d

nd

K(M̃d) (A.1)

where nd, M̃d are given in (12) and (13). Analogously, using 3.151 of [14], we have

I2 = −4

3

√−d

nd

K(M̃d) +
2

3

√−d

nd

{
αd

2

q̃d

�

(
π

2
,
md

q̃d

, M̃d

)
− αd

2

qd

�

(
π

2
,
md

qd

, M̃d

)}
. (A.2)
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Figure A1. Variation of �d as d moves in (− 27
4 , 0).

Thus, from (A.1) and (A.2), we have

�d = 2

3

√−d

nd

{
αd

2

q̃d

�

(
π

2
,
md

q̃d

, M̃d

)
− αd

2

qd

�

(
π

2
,
md

qd

, M̃d

)}
(A.3)

as we said.
Now, �d can be seen as a real function which depends continuously on d. We want to

compute the range of variation of �d (see figure A1). By using the relations

d = 4
(
αd

3

)3 − 9
(
αd

3

)2

αd
1 =

(
9 − 4αd

3

) −
√(

9 − 4αd
3

) (
9 + 12αd

3

)
8

(A.4)

αd
2 =

(
9 − 4αd

3

)
+

√(
9 − 4αd

3

) (
9 + 12αd

3

)
8

and (12), (13), one can check that if d → − 27
4 , then αd

1 → −3
4 ; αd

2 → 3
2 ; αd

3 → 3
2 ; M̃d → 0;

md

qd
→ 0 and md

q̃d
→ 0. Since �

(
π
2 , 0, 0

) = π
2 , we have from (A.3) that limd→− 27

4
�d = √

2π .
Moreover, one can see that if d → 0, then αd

1 → 0; αd
2 → 0; αd

3 → 9
4 ; M̃d → 1√

2
; md

qd
→

−∞ and md

q̃d
→ 1

2 . Hence the first term on the right-hand side of (A.3) goes to 0 as d → 0. To
compute the limit of the second term, we express it in terms of the Heuman’s Lambda function
Λo. Denoting by rd = md

q̃d
, we have

�
(π

2
, rd , M̃d

)
= K(M̃d)

1 − rd

+
π

2

rd

[
Λo(β, M̃d) − 1

]√
rd(1 − rd)

(
rd − M̃2

d

) (A.5)

where K(M̃d) is the complete elliptic integral of the first kind and modulus M̃d (12) and
β = arcsin 1√

1−rd
. Now, using (12), (13), (A.4) and Λo(0, M̃d) = 0, one has limd→0 �d = π.

Therefore, �d varies in (π,
√

2π) as d moves in
(− 27

4 , 0
)
.

In order to prove the monotonicity of �d one might check the sign of its derivative with
respect to d. This seems to be a big task in the light of the above computations. We have just
checked it numerically. The computer generated the above graph of �d in terms of d, when
opted to process (10) and (4).



6824 J Arroyo et al

References

[1] Aleksandrov A D 1958 Vestn. Leningr. Univ. 13 5
[2] Anderson I M, Fels M E and Torre C G 2000 Commun. Math. Phys. 212 653
[3] Arroyo J 2001 Presión calibrada total: Estudio variacional y aplicaciones al problema de Willmore–Chen

PhD Thesis Universidad del Paı́s Vasco
[4] Arroyo J, Barros M and Garay O J 2000 Proc. Edinburgh Math. Soc. 43 587
[5] Arroyo J, Barros M and Garay O J 2001 J. Geom. Phys. 41 65
[6] Barros M 1998 Nucl. Phys. B 535 531
[7] Barros M 1997 Math. Proc. Camb. Phil. Soc. 121 321
[8] Barros M 2000 Class. Quantum Grav. 17 1979
[9] Barros M, Ferrández A and Lucas P 2000 Nucl. Phys. B 584 719

[10] Barros M and Garay O J 1998 Math. Z. 228 121
[11] Chen B Y 1974 Boll. Un. Mat. Ital. 10 380
[12] Chen B Y 1973 J. London Math. Soc. 6 321
[13] Davis H T 1962 Introduction to Nonlinear Differ. and Integral Equations (New York: Dover)
[14] Gradstein L S and Ryzhik I M 1980 Table of Integrals, Series and Products (New York: Academic)
[15] Guo Z, Li H and Wang Ch 2001 Results Math. 40 205
[16] Kleinert H 1986 Phys. Lett B 174 335
[17] Langer J and Singer D A 1984 J. Differ. Geom. 20 1
[18] Nesterenko V V, Feoli A and Scarpetta G 1995 J. Math. Phys. 36 5552
[19] Nesterenko V V, Feoli A and Scarpetta G 1996 Class. Quantum. Grav. 13 1201
[20] Palais R S 1979 Commun. Math. Phys. 69 19
[21] Parthasaraty R and Viswanathan K S 2001 J. Geom. Phys. 38 207
[22] Plyushchay M S 1989 Mod. Phys. Lett. A 4 837
[23] Plyushchay M S 1990 Phys. Lett. B 243 383
[24] Polyakov A M 1986 Nucl. Phys. B 268 406
[25] Polyakov A M 1997 Nucl. Phys. B 486 23
[26] Truesdel C 1983 Bull. A.M.S. 9 293
[27] Weiner J L 1978 Indiana Univ. Math. J. 27 19
[28] Willmore T J 1982 Total Curvature in Riemannian Geometry (Chichester, UK: Harwood)
[29] Willmore T J and Jhaveri C S 1972 Q. J. Math. Oxford 23 319


